CO2 drawdown following the middle Miocene expansion of the Antarctic Ice Sheet

نویسندگان

  • Marcus P. S. Badger
  • Caroline H. Lear
  • Richard D. Pancost
  • Gavin L. Foster
  • Trevor R. Bailey
  • Melanie J. Leng
  • Hemmo A. Abels
چکیده

[1] The development of a permanent, stable ice sheet in East Antarctica happened during the middle Miocene, about 14 million years (Myr) ago. The middle Miocene therefore represents one of the distinct phases of rapid change in the transition from the “greenhouse” of the early Eocene to the “icehouse” of the present day. Carbonate carbon isotope records of the period immediately following the main stage of ice sheet development reveal a major perturbation in the carbon system, represented by the positive dC excursion known as carbon maximum 6 (“CM6”), which has traditionally been interpreted as reflecting increased burial of organic matter and atmospheric pCO2 drawdown. More recently, it has been suggested that the dC excursion records a negative feedback resulting from the reduction of silicate weathering and an increase in atmospheric pCO2. Here we present high-resolution multi-proxy (alkenone carbon and foraminiferal boron isotope) records of atmospheric carbon dioxide and sea surface temperature across CM6. Similar to previously published records spanning this interval, our records document a world of generally low (~300 ppm) atmospheric pCO2 at a time generally accepted to be much warmer than today. Crucially, they also reveal a pCO2 decrease with associated cooling, which demonstrates that the carbon burial hypothesis for CM6 is feasible and could have acted as a positive feedback on global cooling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antarctic ice-sheet response to atmospheric CO2 and insolation in the Middle Miocene

Foraminiferal oxygen isotopes from deep-sea sediment cores suggest that a rapid expansion of the Antarctic ice sheet took place in the Middle Miocene around 13.9 million years ago. The origin for this transition is still not understood satisfactorily. One possible cause is a drop in the partial pressure of atmospheric carbon dioxide (pCO2) in combination with orbital forcing. A complication is ...

متن کامل

Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion.

Magnesium/calcium data from Southern Ocean planktonic foraminifera demonstrate that high-latitude (approximately 55 degrees S) southwest Pacific sea surface temperatures (SSTs) cooled 6 degrees to 7 degrees C during the middle Miocene climate transition (14.2 to 13.8 million years ago). Stepwise surface cooling is paced by eccentricity forcing and precedes Antarctic cryosphere expansion by appr...

متن کامل

The evolution of pCO2, ice volume and climate during the middle Miocene

The middle Miocene Climatic Optimum (17–15 Ma; MCO) is a period of global warmth and relatively high CO2 and is thought to be associated with a significant retreat of the Antarctic Ice Sheet (AIS). We present here a new planktic foraminiferal dB record from 16.6 to 11.8 Ma from two deep ocean sites currently in equilibrium with the atmosphere with respect to CO2. These new data demonstrate that...

متن کامل

Were West Antarctic Ice Sheet grounding events in the Ross Sea a consequence of East Antarctic Ice Sheet expansion during the middle Miocene?

Seismic correlation of glacial unconformities from the Ross Sea outer continental shelf to chronostratigraphic control at DSDP sites 272 and 273 indicates that at least two West Antarctic Ice Sheet (WAIS) expansions occurred during the early part of the middle Miocene (i.e. well before completion of continental-scale expansion of the East Antarctic Ice Sheet (EAIS) inferred from N18O and eustat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013